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Abstract 

Global climate change, although partially understood, is becoming more and more responsible for 

unpredictable weather patterns that can eventually undermine food security and quality of life for all. 

The consequences of this phenomenon for agriculture are relevant to a growing human population, 

which is becoming increasingly vulnerable and often displaced by environmental disasters ever as po-

litical leaders are still challenged to find an accord to cap CO2 emissions to remediate to the ongoing 

climate crisis. The purpose of our work was to review recent literature about the effects of global 

climate change on food production in the upper Midwest region of the US and the Panama Republic 

to propose an original paradigm for achieving sustainability in agriculture through agroecology. Our 

model is adaptable to diverse agrarian contexts. It envisions small scale farming (microagriculture), 

which is often practiced in urban settings, and industrial agriculture (macroagriculture), as two inter-

linked paradigms. Strong connections and a higher level of transparency in agriculture (at both micro 

and macro levels) can enhance the flow of knowledge occurring between these two models of food 

production. As a result, a single, unified model merges as a vehicle to educate people about food 

systems, in an effort to achieve sustainability in modern farming systems. Thus, an empowerment of 

agriculture is achieved to better cope with the necessary resiliency that farming will require to with-

stand the whims of climate unpredictability.  

Keywords: agroecology; biomass; climate change; GMOs; macrofarming; microfarming; sustainabil-

ity; Panamá; U.S. upper Midwest. 
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Resumen 

El cambio climático global, aunque parcialmente entendido, se está convirtiendo cada vez más res-

ponsable de los patrones climáticos impredecibles que pueden llegar a socavar la seguridad alimentaria 

y la calidad de vida para todos. Las consecuencias de este fenómeno para la agricultura son relevantes 

para una población humana en crecimiento, que se está convirtiendo cada vez más vulnerable y a 

menudo desplazada por los desastres ambientales, mientras líderes políticos aún tienen el reto de en-

contrar un acuerdo para limitar las emisiones de CO2 para remediar la crisis climática en curso. El 

objetivo de nuestro trabajo fue revisar la literatura reciente sobre los efectos del cambio climático 

global en la producción de alimentos en la región superior del medio oeste de los EE.UU. y en la 

República de Panamá para proponer un paradigma original con fines a lograr la sostenibilidad en la 

agricultura a través de la agroecología. Nuestro modelo es adaptable a diversos contextos agrarios. Se 

prevé la agricultura a pequeña escala (microagricultura) que se practica a menudo en los entornos 

urbanos y la agricultura industrial (macroagricultura) como dos paradigmas interrelacionados. Cone-

xiones fuertes y un mayor nivel de transparencia en la agricultura (tanto a nivel micro como macro) 

pueden mejorar el flujo de conocimientos que se producen entre estos dos modelos de producción 

alimentaria. El resultado es un solo modelo unificado que se funde como vehículo para educar a la 

gente acerca de los sistemas alimentarios, en un esfuerzo por lograr la sostenibilidad de los sistemas 

agrícolas modernos. De este modo, se logra una potenciación de la agricultura para hacer frente a la 

capacidad de recuperación necesaria que se requerirá para soportar los caprichos de la imprevisibilidad 

del clima.  

Palabras clave: Agroecología, biomasa, cambio climático, OGM, macroagricultura, microagricultura, 

sostenibilidad, Panamá, medio oeste de los EEUU 

Agriculture and rural living at one time were inextricably linked and the prosperity of farmers benefit-

ted a whole landscape of healthy, agrarian communities (1). Weather patterns followed reliably the 

cycling of the seasons, and in accord with these, farmers were accustomed to performing routine field 

operations that enabled the land to be used for the successful growth of crops. Climate thus shaped 

the regional vocation for successfully growing certain animal and plant species, and this success led 

eventually to the design and management of larger farming systems, in the industrialized regions of 

the world.  

Also, within the last one hundred years impressive technological breakthroughs in agriculture fostered 

agricultural policies aimed ambitiously at the limitless expansion of modern farms (2). Manpower ver-

sus land management increased exponentially to achieve maximum crop yields, as technological ad-

vances became established, mainly in the northern regions of the world. Expanding technologies did 

not encounter much resistance because their energy needs were at that time available and inexpensive. 

Consequently, the design of large-scale farming systems continued to be the “successful” model for 

food production in U.S. agriculture and other industrialized countries, despite its massive consump-

tion of oil and other synthetic products such as fertilizers and pesticides, mostly oil derivatives as well 
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(3). Critics of the present, industrial model of agriculture have pointed out its major technical and 

economic limitations (2, 3, 4, 5) and paradoxes (6) in addition to the role that food production plays 

in causing chronic, environmental distresses and amplified carbon dioxide emissions to the atmos-

phere (3).  

At the same time, remarkable steps have been taken to achieve more sustainable systems, to insure 

food security and to pursue sustainability in agriculture. However, despite the successes that already 

have been achieved, modern, conventional agriculture remains anchored to systems of production and 

management whose principles assume the transferability of its farming practices and technologies 

worldwide, in order to maintain high production efficiency, and affordable food prices (2). Conse-

quently, the success of modern farming remains ephemeral as global climate change poses continuous 

challenges to an agricultural paradigm that continues to depend on the premise that state-of-the-art 

technology will resolve any emerging problem. In spite of serious warnings the present form of indus-

trial agriculture continues to remain ‘untouched’ by the compelling need for conserving resources, its 

high carbon dioxide emissions to the atmosphere and their concomitant association with global cli-

mate change.  

Another distressing feature of modern agriculture consists in its heavy reliance on fossil fuels for both 

production and distribution of foods, which threatens the efficiency of agriculture a step further (7, 

8). In the meantime, the unpredictable fluctuations of oil prices place a heavy burden on the cost of 

foods, and despite the on-going efforts to research the efficacy of biomass-derived fuels (9) as an 

alternative to non-renewable fossil fuels, oil may soon be unable to meet the present high energy 

demands of agriculture on the large scale.  

Global climate change challenges food production more intensively, as the unpredictability of weather 

patterns threatens to affect crop yields with more virulent and uncontrollable pathogens (10) and also 

to damage irreversibly the infrastructure of farms and their resource base. At the same time, most 

agriculturalists recognize the compelling mandate of increasing food yields by the middle of the 21st 

century, to fulfill the nutritional needs of a growing human population (11). It is likely, however, that 

the focus on augmenting agricultural outputs may not help farmers adapt to the unpredictable changes 

posed by present and future climate conditions in vast regions of the world (12, 13). Water availability, 

its quality and its more even distribution, in addition to energy use in agriculture, remain very im-

portant additional issues in modern food production for both industrialized and developing countries.  

Finally, the knowledge of growing food is becoming alien to a majority of people, as rural communities 

continue to shrink while the responsibility of farming falls more and more upon the shoulders of a 

minuscule segment of society. In developing countries food production may still engage high segments 

of society yet an erosion of knowledge due to an expansion of monocultures often owned by foreign 

companies has been affecting the livelihood of millions of small farmers and obliterating a culture of 
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sustainable food production. Therefore, we think compelling the need for the general public to reed-

ucate itself about food production, its environmental costs, distribution barriers and other challenges 

that affect present agricultural systems.  

The purpose of our work was to analyze the challenges posed by global climate change in agriculture 

through a review of present research with focus on the upper Midwest region of the U.S. and Panamá, 

while proposing a vision of sustainable food production through agroecology science and manage-

ment. This effort is pursued with the aim of insuring that an oversimplification about the knowledge 

of agriculture is avoided, as previous, erroneous approaches have been demonstrating through a trans-

fer of techniques and technologies across borders while assuming that these would be as effective as 

in the agricultural contexts where they were initially developed (5, 14, 2). For these reasons, small-scale 

agriculture (microagriculture) could emerge as a viable model of farming not only viable to subsistence 

agriculturists of tropical, rural contexts, but also in expanding urban and suburban environments 

worldwide, while its implementation could help to engage and empower a larger segment of human 

society in growing food locally, thus aiding in the effort of maintaining yields and diversifying cropping 

systems, in the face of more frequent and unpredictable shifts in weather patterns. Concurrently, we 

propose that the needed shift that could occur on the macro scale of the agricultural landscape is a 

form of agriculture which relies more and more on the cultivation of perennial polycultures, while 

lessening its dependence on oil. This is not a novel concept, however (15, 3), and it is enhanced by 

the need for restoring biodiversity on the land as a way to ameliorate soil, water and climatic conditions 

(16, 17). Both approaches can be solidly founded in agroecological theory and practices and they affect 

one another, as food production on a micro scale aims at legitimizing the restoration necessary at the 

macro scale to achieve higher levels of sustainability. At the same time, the renovated, ecological modus 

operandi of macro agriculture reverberates upon microfarming systems while engaging urban dwellers 

and other small producers to become more educated about food production, its challenges, opportu-

nities and needs. Such changes and interactions would lead support to a renovated form of agriculture, 

aimed at maximizing sustainability and a more solid basis of modern ‘farming culture’.  

Limitations of agriculture and its adaptations to global climate change 

The successes of commercial, large-scale agricultural systems are based on a very linear model of pro-

duction and despite the breakthroughs of the green revolution of the 1960s to present, modern agri-

culture has not been able to insure food for all, nor overcome the challenges that still continue to 

affect food production (2) and its distribution. Soil loss and degradation, water scarcity and pollution, 

genetic erosion (18), loss of biodiversity (16, 8) and the conspicuous need for oil remain the major 

barriers to sustainable food production. A majority of early 20th century agricultural scientists could 

not at that time have envisioned these issues as major limiting factors in maintaining production effi-

ciency and stability. Notable studies indicated the higher productivity of diverse ecosystems such as: 

grassland (19) and forest (20) when compared to agricultural systems. It has been demonstrated that 

the simultaneous cultivation of more than one crop benefits nutrient uptake, enhances resilience 
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against environmental stresses (4, 18) and attracts pollinators and beneficial insects (21, 22, 23). How-

ever, these study results have had little to no effect on the routine operations of a majority of agricul-

turists and farming experts of the industrialized world, nor legitimized the need to develop more sus-

tainable models of food production. Present agricultural research aims at resolving food production 

challenges one at a time, thus remaining oblivious to the synergies and interactions that in farming 

systems often provide the opportunity to resolve problems more successfully by embracing a holistic 

approach. For example, present-day research in agriculture focuses heavily on GMO technologies that 

help economic crops to withstand specific pest pressures and environmental stresses (e.g., drought, 

soil salinization, frost), yet do nothing to benefit the long-term health and livelihood of agricultural 

communities.  

At the same time, global climate change likely will have significant impacts on agriculture in the Mid-

western U.S., Panamá, and elsewhere. The Midwest U.S. region for example is endowed with some of 

the world’s best soils and favorable climate for agriculture (24) yet, climate models for this region 

predict significant (>4°C) increases in average annual temperature, increased precipitation (25-30% 

increases in winter and spring), less predictable weather patterns, and increased frequency of extreme 

events such as flooding rains, late-season frosts and droughts (25, 26). Although longer growing sea-

sons, more precipitation and increased atmospheric concentrations of CO2 may enhance production 

of some crops in some locations (27, 24) the effects of climate change generally are predicted to be 

negative for the Midwest U.S. (28, 26). Crop production may be inhibited by 1) wetter springs that 

can delay planting, 2) 10-20% less rainfall during late summer and 3) hotter summers that increase 

heat stress and induce early maturation (26). Livestock productivity also may decline due to heat 

stresses, and warmer winters may enable livestock and crop pests and diseases to expand their ranges 

northward into this region (26). The Midwest U.S. already has experienced significant changes in cli-

mate (26). Droughts, flooding and prolonged periods of excessive heat in recent decades have caused 

billions of dollars in agricultural losses, and conditions are expected to worsen under current levels of 

releases of heat-trapping emissions into the atmosphere (27, 26). Similarly, in Panamá and other re-

gions of Mesoamerica, a higher rate of environmental events of high intensity (i.e.: floods and soil 

erosion, prolonged periods of drought) could soon affect negatively the economies of these countries, 

compromise crop yields and jeopardize food security, despite efforts of improving the genetics of 

important agronomic crops, like maize (68) . 

Also, it remains impossible to assess accurately the productivity of agricultural systems with the oc-

currence of more unpredictable weather patterns and this information void can exacerbate the effects 

of global climate change (29). Although industrial agriculture certainly is not immune to the damage 

caused by a changing climate, it remains mostly oblivious to embracing systemic change as an approach 

to adaptation to climate change, because policy development and enactment on this subject are often 

still in their infancy (30) and typically slow to be employed. For these reasons, a conservation and, or 

development of microagriculture, which is more common in Panamá and other central American 

countries, than in the Midwest of the U.S., could trigger the advocated policy and technical shifts, 

which are so much needed at the macro scale.  
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The design and functioning of micro-farming systems 

Small scale farming in urban areas has been engaging city dwellers for decades, improving living con-

ditions for many and generating vibrant local economies (31, 32, 17). Within an urban, or small farming 

context, permaculture can be considered the technical and philosophical tool most suitable for micro-

agriculture because it includes the most holistic approach to the design and maintenance of food pro-

duction systems (Figure 1). A core of moral values (care for the Earth, care for the people, more even 

distribution of surpluses) leads to the tenets of permaculture design (observe and interact with natural 

systems, practice conservation, value diversity and multifunctionality of each element, capture and 

store energy, respond creatively to change, integrate rather than segregate). These principles inspire 

the strategies (with major focus on water use, water quality and conservation) and the techniques, or 

methods, to fulfill the goals of the design (33). 

Figure 1. Values and approaches that guide the design process in permaculture 

 

Soil quality always plays a vital role in successful establishment of crops or other plant communities 

(e.g.: herbs, ornamentals) (34, 35). However, the coexistence of gardens and urban farms with side-

walks, buildings and parking lots is often characterized by soil contamination and poor fertility due to 

loss of soil organic matter (17). Therefore, generous applications of soil amendments and compost 

become necessary prior to initiating any sort of cultivation of urban soils (36). Food production on a 

micro scale recognizes the need for enhancing soil fertility as well as adding various ecological services, 
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which are enhanced by living soil organisms. For this reason, it proposes the use of selected inverte-

brate species (Figure 2).  

Plant residues and other organic biomass become the low-energy input that earthworms (Eisenia foet-

ida) recycle into fertile vermicompost, which amends the soil and regenerates its fertility. For example, 

silkworms (Bombyx mori) have been employed in European agriculture through centuries for the pro-

duction of natural fiber (silk). Their cultivation (sericulture) has been mostly abandoned since the 

introduction of synthetic polymers. In different countries and cultures farmers have been consuming 

for millennia local available species of plants, fungi, animals (especially invertebrates), or learned how 

to grow them on their farms (17). Honey bees (Apis mellifera) are a keystone species, which demands 

great attention in the design and sustainable functioning of agroecosystems, large and small. Notably, 

these insects are famous for their ability to produce honey, wax, propolis, pollen and royal jelly, but 

much more important are the service they provide as a plant pollinators. Prior to its introduction to 

North America in the early 17th century, about 4,000 species of native pollinators (mostly insects) 

were servicing food production for a variety of plant species, especially vegetables and fruits. Spivak 

and her collaborators (21) pointed out the great magnitude of loss in food productivity should bees 

populations (both native and introduced) continue to decline. Regretfully, the widespread use of pes-

ticides has weakened pollinators’ ability to withstand disease. More gravely, the loss of habitat poses 

more challenges for the survival of bees and other pollinators. Despite the recognized needs for re-

constructing refugia within farms (23) or farmscaping (22), the typical agricultural landscape remains 

homogeneous and often laden with toxic chemicals. Thus, the introduction of bees in micro farming 

systems becomes pivotal to the preservation of these species in an environment already much more 

biologically diverse, allowing pollinators to forage successfully and continue to efficiently provide eco-

logical services to cultivated and uncultivated crops.  

Figure 2. Selected invertebrate species for primary productions and services when employed in European micro-farming 

systems.  
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Therefore, in the proposed microfarming model, the outputs (products and services) of one species 

foster the thriving of others and together they amplify the beneficial effects upon the whole system. 

Micro-Agriculture as a restorative ecological paradigm 

Although large-scale agriculture still retains a dominant role in insuring the availability of inexpensive 

food, its management often affects negatively the biodiversity, soil fertility, and water quality of agroe-

cosystems (37, 38, 39, 16, 15). On the other hand, these effects are negligible when studying small 

farming systems like community gardens and small family farms (35, 40, 41). Thus, the idea of micro-

agriculture becomes a viable model for sustainable food production where land and open space for 

farming are limited.  

The use of selected invertebrate species can improve food production and ecological services and also 

the overall quality of small-scale agroecosystems because the ecological power and resiliency of such 

a system are enhanced. The biocenoses established in such a context amplify the capability of micro 

farming systems to regenerate soil fertility and the results at this scale can be far superior to those that 

agronomists attempt to achieve in large cultivated fields. Earthworms (Lumbricus spp., Eisenia foet-

ida) and other soil organisms play a vital role in this process; however, a fertile soil relies on thousands 

of species of invertebrates and microorganisms (42) for proper functioning and sustainability. A pri-

mary goal of micro-agriculture is facilitating soil biocenosis and to foster humification processes. Car-

bon fixation and its subsequent conversion into humus from biomass is achieved by a variety of soil 

biota, which ultimately enhances additional root growth in plants, thus preventing soil erosion and 

making this process absolutely vital to the sustainability of agroecosystems large and small (39, 18, 40, 

4).  

The specific process of humification relies on a diversity of residues within a specific biomass and in 

the contemporaneous presence of diverse taxa of microorganisms that operate in aerobic conditions 

(39, 42). It is a fact that cultivation reduces soil diversity, and excessive tillage (with concomitant oxi-

dations and mineralizations often amplified by fertilizers applications) reduces the organic matter con-

tent of soils (43). Therefore, agriculturalists’ interests should focus on achieving a nutritional balance 

between the crop needs and soil-climate conditions, so that the amount of carbon mineralized from 

crop residues comes close to the carbon derived from crops grown purposefully for biomass produc-

tion. Under these circumstances, sustainability can be pursued only if this nutritional balance is 

achieved in the soil, and this is possible by conserving biodiversity (44, 45, 46, 16).  

This process of soil rehabilitation can be pursued more rapidly and efficiently on the micro scale than 

in large fields, where topsoil is more easily lost to erosion brought on by frequent disturbance from 

heavy, mechanical implements. Therefore, maintenance of soil fertility is more easily achievable when 

farming is done in small plots (35). Achieving and maintaining a superior level of fertility in the soil 

also allows a more intensive cultivation of economic crops on limited space, with an opportunity to 
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harvest outstanding yields (34, 33). Thus, soil fertility and a diverse plant community are key features 

of a sustainable agroecosystem, regardless of size.  

An equally seminal feature of microagriculture is education, as a majority of people have been removed 

from food production for at least a generation. Although this may not be true for Panamá, also in this 

country large scale agriculture has deepened the knowledge gap across generations about the origin 

and cultivation of foods (17). Thus, developing micro farms within cities and urban municipalities 

becomes an effective vehicle to reconnect large segments of modern society with food production 

systems and approaches, nutrition and sustainability, while also developing local economies and im-

proving health conditions for the community (47. Within the conceptual framework of microagricul-

ture, the role played by community members becomes pivotal to its success, as this effort strives to 

bring together people from across the spectra of age, social status and culture. Micro-agriculture em-

phasizes richness of knowledge and on being technologically appropriate for the context in which it 

is taking place unlike agriculture on the macro scale, which is information-rich and technologically 

advanced. Additional attributes distinguish the two paradigms of agriculture here discussed (Table 1), 

yet, and despite their differences, they equally complement each other. They have potential for direct-

ing the future of agriculture toward higher levels of sustainability, if they comprehend their primary 

role in maintaining quality of life and if they will avoid operating in isolation. 

Table 1. Selected attributes of farming, their level of availability and main characteristics at the macro and micro scale 

(modified after: Altieri and Rosset, 1996) 

Attribute macro-agriculture micro-agriculture 

Knowledge Limited/Homogeneous High/Diverse 

Information High Limited 

Technology High Appropriate 

Energy needs High Very limited 

Biodiversity Very limited Very High 

In-puts of production High and expensive Limited and inexpensive  

Growing system Monoculture Polyculture 

Market venues Global market Local market 

Resource needs High Limited 

Crop yields Maximal Optimal 

Production system Linear Cyclical 

 

For several decades, reconstructed and remnant native prairies of the Midwest region in the U.S. have 

provided tremendous opportunities to ecologists and agronomists to learn about the complex dynam-

ics of a biodiverse system, while attempting to transfer this knowledge to the cultivated field. For 

example, a study (48) on restored prairie plots demonstrated the greater efficiency and productivity of 

diverse fields when prairie grasses and forbs were grown in polycultures. Similarly, the remaining 

patches of tropical forests which are typical ecosystems of Panamá and other regions of Mesoamerica 
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should be looked at as models for designing sustainable farms, where tree species become more often 

employed to provide products, services and to enhance farms agrobiodiversity (61). In contrast, mon-

ocultures of crops for alternative energy sources have often amplified the environmental degradation 

and an erosion of agrarian systems (15, 45). Continual soil disturbance typical of large-scale agriculture 

leads inevitably to erosion, salinization and loss of biodiversity and we realize that these indirect, en-

vironmental costs should be avoided at all times to insure that farming systems remain productive and 

resilient, especially at times of climatic adversity. Also, the risk of desertification increases proportion-

ately on landscapes where the average temperatures are high in conjunction with water scarcity and 

high population pressure (49, 12). It remains unknown, however, at what level biodiversity in the 

agroecosystem may complement successfully the viability of sustainable farming practices. Recent 

studies have indicated that without maintaining an appropriate carbon balance in the soil, the produc-

tivity declines to the point that farming may come to an end (18). A shift therefore becomes necessary 

to design future agroecosystems that are capable of maintaining crop production while adapting to 

climate change. The effort of this renovated design of farming systems should consider species diver-

sity to achieve sustainability, resilience and retention of production efficiency. Restoration ecology (15, 

50) permaculture (33) and agroforestry (61) have potential for rehabilitating agroecosystems at the 

macro and micro scale with the ecological services they provide, while an adaptive management of 

these multifunctional systems (9) becomes the tool for coping most successfully with unpredictable 

and sudden weather changes.  

Conclusion 

Micro-farming systems cannot compete with conventional agriculture in terms of yields and potential 

of market distribution for the sale of their products and services. However, their potential for insuring 

a reliable supply of quality food in the urban and suburban environments is not negligible. They also 

are more easily adaptable to climate and environmental changes because they are more biologically 

diverse and reliant on local resources, knowledge and appropriate technologies (51). A patchy land-

scape of gardens and microfarms can become very productive, and its efficiency has been amply 

demonstrated by the success of urban agriculture in Cuba since the fall of the former Soviet Union 

and loss of support for its former food system (52, 53). Many other countries in the developing world 

depend on urban farming to complement food production, thus maintaining local economies and 

conserving valuable germplasm (54) and resources (41). These and similar systems cannot compete 

with the yields and profits that industrial agriculture can achieve. However, the much lower environ-

mental impact of food production on microfarms should be appreciated and recognized (14, 55) and 

inspire macroagriculture to design and manage more biodiverse farms that can be more self-sustaining. 

Farmers in Midwest states of the U.S. and Mesoamerican countries like Panamá may be able to reduce 

climate-induced economic losses by adapting their management practices to the changing environ-

ment (27, 25, 28, 56, 57, 58, 68), but adaptations involving typical crops and techniques may only be 

able to compensate for 50% of yield losses predicted from moderate climate warming (57, 58). Man-

agement adaptations that incorporate perennial cropping systems and agroforestry, increased diversity 
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of crops and livestock and less reliance on annual crops such as corn and soybeans may be necessary 

agronomic strategies to effectively cope with a changing climate in most agricultural landscapes yet, 

according to this approach, achieving sustainability in agriculture is possible when farming becomes 

multifunctional, to enhance benefits for society in terms of production and services (9). This model 

aims at developing a new, agricultural bio-economy. However, to implement it thoroughly, key policies 

such as the farm bill in the US (3) will have to include provisions to foster the existing Research & 

Development infrastructure to substantiate with good science the validity of this emerging paradigm 

(59). Shepard and Westmoreland (60) have already described a vision for the agrarian landscape of 

south central Minnesota whereas Fisher and Vasseur suggest agroforestry as a tangible approach to 

foster sustainability in panamenian food production systems (61). Undoubtedly, a decentralization of 

the present food system is very much needed in U.S. agriculture, to reduce the emissions of carbon 

dioxide that are released into the atmosphere just to transport agricultural commodities (62) in this 

global, market economy. Microagriculture can demonstrate the economic benefits of a local approach 

to food production, as the much lower input demand for a micro-farming system (especially energy) 

has potential to establish a vibrant, local food system of quality, stability and regional economic pros-

perity, modeled after previous experiences in Iowa (7) and Pennsylvania (63). 

Large-scale agriculture, whether or not it is founded on the science of agroecology, causes more drastic 

disturbances to natural ecosystems than microagriculture. Minimizing these and similar effects be-

comes imperative to lessen the consequences of a changing climate upon the pests, diseases and their 

toll on cultivated crops (10). Also, a vision for sustainable agriculture embracing agroecology must 

remain committed to closing the nutrient loop of its food production cycles, while preserving cultural 

and environmental resources (64, 65). Microfarming systems are managed in a manner that attempts 

to restore and conserve ecosystem attributes and rely upon ecological services and biodiversity at a 

much higher level than industrial agriculture.  

A form of agriculture inspired by agroecology engages farmers to diversify their operations by increas-

ing the diversity of crops grown (37, 6); this form of agriculture can be more easily carried out at the 

microscale than on large agroecosystems. At the same time, microfarming acquires a true heuristic 

character because (if practiced in urban areas), it is visible and offers great opportunities to bring the 

community together, where everyone can get involved (32, 55). 

In this context food production becomes valuable, educational and democratic, even when accom-

plished on the smallest parcel of land. These and similar demonstration, postage-stamp farming sys-

tems rely on people’s knowledge more than information and technology and they can truly reflect the 

new, sustainable culture of doing agriculture. They are grassroots and serve the purpose of reconnect-

ing human communities with food systems and our natural resource base. Pursuing such a diversifi-

cation of the human landscape becomes pivotal in insuring food security at a time of unpredictable 

climatic changes. Eventually, this approach to food production becomes the vehicle to move industrial 

agriculture toward the much needed systemic changes that have been advocated for a long time (4, 49, 

66, 3, 67) because more and more people become re-educated about agriculture where food is grown 
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where we live. Thus, the pursuit of sustainability in agriculture should derive from a continuous tuning 

among the needs, challenges and efforts of macroagriculture to shift away from a design that supports 

monocultures and high energy inputs to achieve food production.  

Concurrently, microagriculture is connected, aware and informed about the issues which are typical 

of agriculture on a large scale. Its alternative design, management and localized resource base inspires 

macroagriculture to research more sustainable methods to maintain yields and achieve a more self-

sustaining productivity. The flow of knowledge between the two food production models is centripetal 

(Figure 3), transparent, holistic and leads eventually to a unified paradigm of sustainable food produc-

tion founded on the science of agroecology. 

Figure 3. Interconnectedness between large-scale and small-scale agriculture 
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